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PREPARATION AND CHARACTERIZATION O F  SLUSH 
4. 

HYDROGEN AND NITROGEN GELS". 

A. S. Rapial and D. E. Daney 

An experimental apparatus has been developed for the 
gelation of slush hydrogen, and slush hydrogen was gelled 
for the first time. 
capacity of the gel as a function of m a s s  percent gelant 
were made for liquid and slush nitrogen and hydrogen. 
These measurements verify the simple models discussed 
here  for gelled liquid and slush within the experimental 
accuracy; the models predict a reduction in gelant con- 
centration from 38 mass  percent to 25 mass percent in 
going from Normal Boiling Point liquid hydrogen to slush 
hydrogen of 0. 40 solid fraction for the silica gelant used 
in this work. 
other gelants should be similar. 

Key Words: 

Measurements of the weight-bearing 

Reduction in the m a s s  'percent gelant for 
* 

Gels, liquid hydrogen gels, liquid nitrogen gels, 

pellants, . slush hydrogen, slush hydrogen gels, 
slush nitrogen gels. 

' 1iquid;solid hydrogen mixtures,  rocket'p.ro- 

1. Introduction 

Because of the high specific impulse achieved with liquid hydro- 

gen in combination with various oxidizers (liquid oxygen and liquid fluo- 

rine,  for example), i t  has  become a n  important rocket fuel in spite of 

the problems associated with its use. Some of these problems o r  dis-  

advantages a re :  a) low density, b) temperature stratification, c) short  

holding time due to the low latent heat of hydrogen, d) hazards  assoc i -  

a ted with the high vent ra tes ,  and e) unstable flight conditions caused by 

sloshing of the liquid in the fuel tank. 

* 
sponsorship of the NASA-George C. Marshall  Space Flight Center with 
added support f rom the International Atomic Energy Agency and the 
University of Colorado. A more  detailed report  is given in  a n  M. S. 
'Thesis  by Rapial [ 19691. 

This work was ca r r i ed  out at the National Bureau of Standards under the 



Recently, two independent techniques have been developed which 

can completely eliminate some of these undesirable features and partial-  

ly eliminate others.  One is the production of liquid-solid hydrogen mix- 

tures ,  "slush hydrogen, by further refrigeration of the liquid. The 

other is the gelation of liquid hydrogen by the addition of a fine particle 

gelling substance. 

combines the slushing and gelling techniques to produce a unique product, 

gelled slush hydrogen, which combines most  of the advantages of both 

gelled and slush hydrogen. 

A third method, the subject of this Technical Note, 

The use of slush hydrogen offers a number of advantages. The 

increased density of slush hydrogen compared to Normal Boiling Point 

(NBP) liquid hydrogen (15 percent greater  density for a 50 percent solid 

fraction) reduces fuel tank capacity requirements o r ,  conversely, in- 

c r eases  existing fuel tank mass capacities. Thermal  stratification 

should be eliminated in the region where solids a r e  present  and the low- 

e r  enthalpy of slush hydrogen compared to NBP liquid (165 J/mol'r lower 
.*. 

enthalpy for 50 percent solid fraction slush) resul ts  in longer holding 

t imes and/or  reduced insulation requirements.  

eliminated thus reducing a potential hazard.  However, it should be 
2 

noted that slush must be made at a reduced pressure ,  7. 1 kN/m 

so that precautions must be taken against air contamination of the 

mixture. 

Venting is reduced o r  

( 1  psia),  

Gelled liquid hydrogen, which flows as  a liquid under moderate 

applied force yet retains a semisolid structure at low s t r e s ses  in s tor -  

age, offers other advantages. Sloshing of liquid, which has  a considerable 

.*. -4- 

The SI (Systkme International d' Unitds) system of units [ASTM, 19671 
has  been used throughout this text. Equivalent Brit ish units have been 
given in parentheses when applicable, but alternative met r ic  units and 
other units have not been given in the text. 
iar with SI units, some conversion factors  a r e  given in  the Appendix. 

As a n  a id  to those not famil- 

2 



effect on the vehicle stability, can be minimized. 

has  been reported to evaporate at about one-half the rate  of pure liquid 

[ Kartluke, e t  al. , 19641 , and gelled liquids can be. retained by screens.  

In a punctured pipe the flow may stop if the p re s su re  on the gel is r e -  

lieved. However, there a r e  a l so  some problems o r  disadvantages as-  

Liquid i n  gelled fo rm 

sociated with the use of gelled hydrogen. These include: a) difficulty in 

handling gels in pumps and nozzles, b) r e s t a r t  problems due to residual, 

nonvolatile gelant left in the pumps, valves, etc. , and c) degradation of 

the propellant by the addition of a less energetic gelling agent (i. e. , a 

gelling agent which reduces the specific impulse of the propellant). 

Efforts a r e  underway to minimize these disadvantages by reduc- 

ing the amount of gelling agent, by choosing more  energetic gelling 

agents, and by using a gelling agent, such as -solid methane, which will 

evaporate on heating. 

.One method for reducing the amount of gelling agent is  found in 

the gelation of slush hydrogen, since only the liquid portion of the slush 

requires  a gelling agent. 

able features of both gel and slush. 

has a high density and low enthalpy. 

be increased and/or  insulation requirements decreased. Whereas the 

s t ructure  of liquid gels i s  strengthened by heat input and the resulting 

evaporation of the gelled liquid, heat t ransfer  to gelled slush melts  the 

solids, dilutes the gel, and weakens it. 

a -  

Gelled slush also combines most of the des i r -  

The resulting semisolid substance 

As  with slush, holding t imes would 

In the experiments described here ,  a commercial  pyrogenic 

silica (Cab-O-Sil@) was chosen as the gelling agent. Although it has  no 

@Cabot Corporation trademark. 
the pyrogenic silica employed has  been necessary to make the resul ts  of 
the work sufficiently meaningful. Identification of the pyrogenic silica o r  
its manufacturer by the National Bureau of Standards in no way implies a 
recommendation or endorsement by the Bureau. Furthermore,  use of 
other t rade names in this Note is for the sake of clari ty and does not in 
any way imply a recommendation o r  endorsement by the Bureau. 

P rec i se  specifications in this paper of 

3 



fuel value, and thus would not be suitable for use in a gelled hydrogen 

rocket propellant, it does have a small particle size (7 nm), is commer-  

cially available, and has  been used by previous investigators [ Kartluke, 

e t  a l . ,  1964, and McKinney and Tarpley, 19661. On the basis  of the 

simple theory of gelled slush presented here ,  the resu l t s  of these studies 

using pyrogenic silica probably can be extended to other liquid hydrogen- 

gelling agent combinations. 

Although gelling of liquids is  not new, gelation of rocket fuels 

and oxidizers has  been practiced for only a decade. 

gations have been made on gelation of liquid hydrogen by Kartluke, e t  al. 

[ 19641. 

gelants. 

hydrogen in a larger  capacity dewar and found that the gel in the la rger  

batch behaved no differently than in a smaller batch. 

a r e  presently being made to study geiation of space storable propellants. 

Workers at Aerojet-General [ .1967a] have been successful in gelling 

Extensive investi- 

Their study covered gelation of liquid hydrogen with several  

McKinney and Tarpley [ 19661 described gelation of liquid 

Significant efforts 

liquid O F  in situ with solid C 1 F  
2 3 

produced by bubbling a dilute mixture 

of He-ClF  into liquid O F  Ear l ie r ,  Aerojet-General presented a 

feasibility study which showed that gelled propellants may be used in 

rocket engines with little difficulty [ 1967131. 

actively being pursued by Aerojet-General [ 19681. 

3 2' 

Work in this field i s  still 

2 .  Gel Models 

2 .  1 Gelled Liquid 

The gelation of liquid hydrogen presents  considerable difficulties 

A because of its abnormal properties in comparison with other liquids. 

few of the properties for various liquids a r e  shown in Table I. 

4 



Table I 

Selected Proper t ies  of Some Liquids 

Heat of 
Vapori- Density 

Melting Boiling zation, at NBP Trouton Dielectric 
Liquid Point, K Point, K J / m o l  kg /m Constant Constant 

273.16 373. 16 40, 758 958 28. 3 80. 37 

13. 80 20.27 89 8 70 10 .5  1. 25 

63.15 77. 36 5 , 5 3 5  810 17. 1 1. 48 

90.68 111. 67 8 ,143  42 4 17. 1 1. 68 

H2° 

HZ 

N2 

CH4 

F r o m  Table I, i t  is seen that LH is rather  unique in i t s  proper-  
2 .  

t ies  as related to water and other substances. 

water with gelatine powder leads one to think that a gelant should possess  

two properties: (1) long chain molecules with lyophilic substituted groups, 

and ( 2 )  part ia l  solubility. 

solvent; only helium and neon can be dissolved in it to a significant extent. 

The nonsolvent property of LH 

properties. 

indicates negligible associative property. 

of a substance is a measure  of i ts  low solvent action. 

the low value of the dielectric consta'nt shows that LH 

ly an un-ionized state. 

molecule s. 

The familiar gelling of 

Liquid hydrogen is characterist ically a non- 

can also be deduced f rom other physical 2 
For  instance, a low value of Trouton's constant (Table I) 

Low association of molecules 

On the other hand, 

exis ts  in essent ia l -  
2 

Such a state does not promote affinity for macro-  

These properties thus rule out any possibility of finding a gelling 

and its substance whose action depends upon its partial solubility in LH 

macromolecular structure.  Gelation of LH requires  a substance cap- 

able of surface interaction with LH 2 
produced with large specific surface area. 

subs'tance can be used, provided one can produce f rom it very fine 

2 

2 
molecules and capable of being 

This means that a lmost  any 

5 



part ic les  of large specific a rea .  We shall not deal here  with the methods 

for  high surface a r e a  production but only allude to the basic need for a 

search  for these methods. 

LH 

This need a r i s e s  f rom the end use of gelled 

o r  gelled slush in rockets as  a fuel. 2 
Addition of a substance to LH may impair its effectiveness as a 2 

fuel, i. e . ,  the specific impulse generated by burning the gel with a given 

oxidizer may be smaller .  Both the quantity and the fuel value of the add- 

ed substance a r e  important. 

good specific fuel value. Substances like solid methane, lithium, etc. , 

a r e  available, However, one must be able to produce these substances 

in desirable particle size and quantities. It should be remembered here  

that the most desirable substances to consider for the gelant shouldalso 

be capable of easy evaporation on heating. 

hydrocarbons such as methane a r e  good in this respect.  

There is no dearth of substances having 

Most low order  aliphatic 

Ka.rtluke, et  al. [ 19641 ,give a semiempirica.1. relationship . .  between 

particle density and diameter,  liquid density, andgelling agent concentra - 
tion which is  shown in figure 1. These curves a r e  based on the following 

as sumptions : 

a) The particle-liquid surface forces  a r e  the same for all liquid- 

gelling agent combinations, i. e. , the number of particles per unit 

volume i s  a constant. 

bf There is no excess volume of mixing, i. e. , the volume of the 

gel is equal to the volume of the liquid plus the volume of the 

gelling agent. 

Mathematically, these assumptions can be expressed as 

N 

1 ’  
P= C 
V 

6 
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and 

v = v p v  = - + v .  
g p.e g 

With the definition of the mass percent gelling agent, 

Y = 100 mg , 
m + rn4 

g 

and the assumption that the gelling agent particles a r e  spheres ,  

T r 3  V = - d ,  
P 6  

the following expression for the gelling agent concentration m a y  be 

de rived: 

The number of particles per unit volume, c 

The curves of Kartluke, e t  al. (fig. 1) may be reproduced by selecting a 
22 3 

value of 3. 86(10) par t ic les /meter  for c The interparticle distance 

for a cubic matrix with this value of c is 30 nm, o r  about 100 molecu- 

lar diameters  fo r  hydrogen. 

Y only a t  the initiation of gelling, Le., for a gel of zero  yield strength. 

i s  evaluated empirically. 
1’ 

1’ 

1 
Equation (3) descr ibes  the dependence of 

F o r  fixed L) R k y  and d, Y increases  with yield strength. This 

relationship i s  t reated empirically in  this study. 
g’ 
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F o r  small gelant particle diameters  ( l e s s  than 10 nm), and for 

values of c having the same order  of magnitude as given above, (3 )  

reduces to 
1 

60 0 3 
Y = - ( 0  / P  ) d . Trc g .e 1 

This simplified fo rm of the gel model shows the dependence of Y on P 

and d more  clearly. Because of the cubic dependence of Y on the 

particle radius, efforts to reduce this parameter  should yield the most 

significant improvement in reducing Y .  

gelant w a s  used in the work described here ,  only the dependence of Y 

on the liquid density could be tested. 

g 

Since only one size and kind of 

2 .  2 Gelled Slush 

A simple model fo'r slush hydrogen gelation a s sumes  that the 

solid hydrogen particles do not interact with. the gelling agent particl,es, 

i. e . ,  that the relatively lcrge slush particles,  0. 1 mm to 10 mm [ Mann, 

e t  a l . ,  19661, will not influence the gelation of the liquid portion of the 

slush. The resulting gel is then a mixture of gelled liquid with solid 

particles of hydrogen either dispersed in the gelled liquid o r  settled in  

the lower portion of the mixture. Thus, one would expect that with a n  

increase of the solid fraction (hydrogen) in the slush, the amount of gel- 

ling agent required for gelation will decrease and will be proportional to 

the liquid fraction. 

particles per unit volume in  the liquid is a constant at the initiation of 

gelling. 

As  before, it is assumed that the number of gelant 

The model for gelled slush may be expressed mathematically as 

can be y& follows: 

converted to a volume percent by 

The mass percent gelling agent in  a liquid gel, 

9 



fraction Y 

the volume of the liquid in  the slush is given by 

(1  - X)/Dtt > 

where 

( 6) has  the dimensions : 

P t t  is the density of the liquid at the tr iple point. Expression 

volume of liquid/unit mass of the slush. 

By multiplying ( 5) and (6)'togeth.er we can obtain the volume of gelant . 
. .  . .  .. 

:< . .  
present ifi a unit m a s s  of the slush, , Y s a  ora 

.I. 

Y& = Y t 4  P (1  - X)/(lOO - Y4 ,  "P4t - (7) 

To represent  the resul ts  in mass we have 

4. . -,. 

YSCDg 

100 t Y&P 
Ys = .b a 

g 
_ -  _ -  

l o  



Since existing dat 

insufficient to describe t 

e s s a r y  to acquire additional experimental data to relate the weight- 

bearing capacity of the gelled liquids with various Cab-0 

tions. 

1 concentra- 

Another aspect  of gelled slush noted previously i s  the effect of 

heat leak on the melting of solid hydrogen. 

report  that gelation of LH 

factor of 2 over that for pure hydrogen. 

with gelled slush, one would expect a comparative slower ra te  of mel t -  

ing for solid hydrogen; however, accurate  predictions of the enhancement 

of the storage t ime for gelled slush cannot be.made a t  .this time because 

of the lack of data. 

Kartluke, e t  al. [ 19641 

reduces the evaporation ra te  of LH 2 2 by a 

Assuming analogous behavior 

3. Apparatus 

Some problems encountered in the design of the apparatus were: 

(a) precooling and weighing of the gelant and i ts  introduction to the 

system; (b)  production, measurement,  and t ransfer  of slush hydrogen; 

(c )  s t i r r ing  both for slush hydrogen production and for blending the 

gelant and slush hydrogen; and (d) measurement of the gel yield strength. 

In a small  laboratory setup, the gelling agent used in this work 

(Cab-0-Sil) was studied for i t s  fluidized flow properties.  

revealed that the silica develops a s 

that, even with a widemouthed conical flask of 0.003 m capacity, the 

si l ica would not 

Bridging of the material occurred, but not necessar i ly  a t  the narrowest 

These studies 

t ic  charge while being handled and 
3 

smoothly when the 213-full flask w a s  inverted. 

1 1  



point. 

silica was smooth at high velocities, any effort to regulate the flow r e -  

sulted in choking of the 13-mm (1/2-inch) diameter tube, and disman- 

tling of the test apparatus was often required. 

o r  weighing method was found. 

Although the fluidized flow system showed that the t ransfer  of 

No satisfactory t ransfer  

In addition to the weighing requirement, it was a l so  necessary to 

cool the silica before it was added to the slush hydrogen to minimize 

loss of slush by melting. Unfortunately, any cooling device designed for 

efficient t ransfer  of heat f rom the gelling agent not only tended to hinder 

the flow of the silica, but a l so  presented difficulties in weighing. 

ideal solution would have been a scheme whereby the gelling agent could 

be cooled and weighed independently before being added to the slush 

hydrcgen. 

methods were investigated. 

by preweighing a quantity of the gelant and placing the gelant in a dewar 

directly below a vessel  i n  which the slush hydrogen was produced; the 

latter was then t ransferred to the gelant-containing dewar below. 

The 

Since no such solution was found for these problems, other 

Most of the problems were finally solved 

Figure 2 shows this experimental arrangement.  The gel dewar 

and the slush generator,  positioned above the gel dewar, a r e  enclosed 

in a 152-mm (6-inch) I. D. s t r ip  silvered Pyrex  shielding dewar. During 

the liquid and slush hydrogen gelation experiments, this 152 -mm shield- 

ing dewar was in turn immersed  in a 254-mm (10-inch) I. D. s t r ip  sil- 

vered liquid nitrogen shielding dewar. 

(4-inch) I. D. by 178-mm (7-inch) deep unsilvered double-walled Pyrex  

vessel  with a 0. 0013 rn 

102- 

dewar makes it possible to solder the gel dewar to the double-ended cap 

which separates the gel and slush containers. The slush generator is  a 

102-mm (4-inch) diameter,  203-mm (8-inch) long single -walled Pyrex  

The gel dewar is a 102-mm 

3 
capacity in the double-walled portion. The 

diameter stainless steel-to-glass joint forming the neck of the 

12 
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---f SLUSH VALVE SHAFT 

SLUSH GENERATOR VENT- 

STIRRER HOUSING - 

WARM-UP GAS TUBE- 

SLUSH GENERATOR- 

SHIELDING DEWAR- 

VALVE POSITIONING CAGE- 

SLUSH VALVE SEAT 

BRASS VALVE with KEL-F 
SEALING SURFACE 

GEL DEWAR-’ 

SHIELDING DEWAR 
FILL and VENT 

GEL DEWAR VENT 

-MAGNETIC COUPLING 

-EXPANSION BELLOWS 

-BRASS CAP 

-S.S. to GLASS JOINT 

-STIRRING BLADE 

-STIRRING YOKE 

-PLUMB BOB 
MANIPULATING TUBES 

-TEFLON RING GUIDE, LOOSE 
FITTING, FOR STIRRER SHAFl 

-COTTON THREADS 
to SUPPORT PLUMB BOBS 

-MERCURY FILLED 6 rnrn 0.0 
GLASS PLUMB BOBS 

-STIRRER SHAFT 

-AC-PLASTIC STIRRER BLADE 

Figure 2. Dewar Arrangement. 
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vesse l  with stainless steel-to- 

to the b r a s s  caps at both ends and has  a 0.0014 m 

is a photograph of this slush generator-ge 

rex joints at either end. It is soldered 
3 

capacity. 

war assembly. 

Figure 3 

The s t i r r ing assembly seals the gel and slush vesse ls  f rom each 

other, f rom the shielding dewar, and f rom the environment. The 

6. 4-mm (114-inch) diameter main s t i r r ing shaft extends from the air 

metor through the dewar arrangement  to the gel vessel .  

vesse l  this shaft is sheathed by a 9. 5-mm (3/8-inch) diameter tube which 

Above the gel 

extencis up to the magnetic coupling and f rom there to a n  external pack- 

ing gland. 

i Z ,  7-mni (1/2-inch) 0. D. stainless s teel  tube which seals it f rom the 

shielding dewar. The magnetic coupling, composed of concentric, radi-  

a l l y  magnetized magnets, t ransmi ts  the rotation of the inner drive shaft 

to the slush generator stirrer housing while providing a hermetic  seal 

bet\v?i-.ii the inner drive shaft and the. slush generator. 

Above the magnetic coupling this assembly is  housed in  a 

Figure 4 shows. 

the details of this unique coupling. 

In order  to permit  t ransfer  of slush or liquid f rom the slush gen- 

e ra tor  to the gel dewar, a valve was provided in the double-ended cap 

separating the two containers. 

3. 2-rnm (1/8-inch) thick Teflon ring, with a 0.  16  r a d  ( 9 " )  taper ,  sand- 

wiched between two b r a s s  pieces (fig. 2) .  A matching sea t  i s  machined 

in the double-ended b r a s s  cap. 

to 1 3  inrn (l/2 inch). 

The valve consists essentially of a 

A pneumatic actuator opens the valve up 

In o rde r  to define the gel s t ructure ,  the yield strength or weight- 

Searing capacity must  be measured. Because of their  simplicity, plumb 

bobs were used. These plumb bobs a r e  6-rnm (0.236-inch) 0. D. glass  

tubes with hemispherical  ends and a r e  filled with mercury  throug 

capillary a rm to give each plumb bob the desired weight. In this 

four plumb bobs with m a s s e s  of 2 .  3, 5 ,  7. 5 ,  and 10 g were used. 

14 



Figure 3. Photograph of the System without Shielding Dewar. 
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6.4 mm 
Stainless Steel 

Sta in less Steel 
Shaft  Cover 

~~ 

Bear ing Retaining R ing  

77-R-8 Bear ing 
w i t h  Ruion Separator  

Outer  Br'ass Housing 

---. Inner Brass Housing 

5 Piece Inne r  Magnet - 
/ 
/I 3 Piece Outer  Magnet 

\ 

Outef  Brass Housing, / 
Lower Piece 

I 

Notes:  

I. Stain ~ S S  Steel Bearings 
are Non-lubricated 

2. Retainining Ring is Soldered 
w i th  Woods' Metal. 

3. 5 Piece I n n e r  Magnet is Joined 
onto the Shaf t  w i t h  Epoxy. 

4. 3 Piece Outer Magnet is Held in  
Lower Housing with Epoxy. 

5. Outer Housing Dimensions 
(36rnm O.D. x 51 mm Long) 

Figure 4. Magnetic Coupling. 
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Although in this work the directly measured weight-bearing capacity is 

used to characterize the gel, McKinney's [ 19681 relationship between 

the plumb bob weight and the yield s t r e s s  as determined by a viscometer 

a l so  is  given for completeness. 

Yield Strength as a Function of Plumb Bob Weight 

Plumb bob we i g  ht Plumb bob weight Has yield 
supported by gel not supported by gel- strength of 

2 cN c N  N / m  

- -  
2. 3 

4. 9 

7. 4 

9 .  8 

2. 3 

4. 9 

7. 4 

9.  8 

- -  

c20 .0  

2 0 . 0  - 34.5 

34. 5 - 47. 8 

47. 8 - 61. 1 

>61. 1 

The plumb bobs a r e  ra ised-and lowered through 178-mm (7-inch) 

t rzvel  by 3. 2-mm ( 1  /8-inch.) diameker stainless.stee1 rods. which a r e  

attached to the plumb bobs via black threads (for good visibility). 

rods pass  through packing glands and a r e  manually manipulated. 

These 

Each vessel  (the gel dewar, the slush generator, and the shield- 

ing dewar) can be evacuated, vented, and filled with hydrogen or  nitro- 

gen gas.  Figure 5 is a schematic of the system. Valves 1, 2,  3, and 

21 permit evacuation. 

11, 12,  and 13, or  through the 20 cfh wet tes t  meter  via valves 8, 9 ,  

and 10. Valves 5, 6 ,  and 7 control the supply of hydrogen o r  nitrogen 

gas to each vessel. 

relief valves S1, S 2 ,  and 5 3 .  Gas pumped f rom the vessels  can be 

measured by the 150 cfh wet test meter.  

absolute manometers and compound pressure  gauges. 

Venting is accomplished directly through valves 

Over-pressuring of the vessels  is prevented by 

P r e s s u r e s  a r e  measured by 
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4. Experimental Technique 

Before the gelling agent is placed in the gel dewar it is prepared 

and weighed. 

(previously cleaned and dried) and dried at 105" C under a vacuum of 

about 0.  1 kN/m The vacuum is broken with dry 

nitrogen, and about 50 g of silica is placed in the gel dewar. 

agent is weighed in the gel dewar which i s  placed directly on a balancing 

scale. 

ed in place on the apparatus,  and the silica is evacuated in situ with 

occasional s t i r r ing for 12 hours o r  more  to remove any moisture ad-  

sorbed during the approximately 30 -minute weighing and assembly pro-  

cedure. Several  t imes during the room temperature evacuation period, 

About 60 g of pyrogenic silica is placed in a desiccator 

2 
for several  hours. 

The gelling 

The weighing accuracy is  f 0.  2 g. The gel dewar is then solder- 

dry nitrogen gas  is admitted to the gel dewar and the pressure  is raised 

to 0. 12 MN/m before resuming evacuation. This procedure helps 

break up any agglomerates which may be formed during the weighing or 

evacuation 'steps. 

evacuation, care  must  be taken not to pump powder into the lines. 

it is essential  that the pressure  over the silica bed be carefully con- 

trolled at all times. 

before the evacuation valve is closed. 

f rom the "boiling" bed surface. 

progresses .  

When the bed returns  to its original position, further evacuation may be 

resumed--cautiously. The cycle is repeated until further opening of the 

valve does not swell the gelant bed. This procedure is  a lso car r ied  out 

a f te r  each experimental run is completed, and af ter  the bed has  under- 

gone evacuation for severa l  hours. 

2 

Because the ,silica bed expands rather rapidly-under 

Thus, 

The bed is allowed to r i s e  about 38 m m  (1  -1 / 2  inch) 

The degassing is clearly visible 

The bed sinks slowly as the degassing 

Stirring is car r ied  on throughout the evacuation process.  

The slush generator is filled by condensing hydrogen gas ( o r  

nitrogen gas during the nitrogen tests) in  the generator at the expense 

19 



of the liquid hydrogen in the 152-mm (6-inch) shielding dewar. 

the heat generation caused by the spontaneous conversion f rom normal  

hydrogen to parahydrogen would be undesirable, parahydrogen gas  is 

condensed f rom the liquid t ransfer  line via valve 16. 

pressure  difference between the generator and the shielding dewar pro-  

vides the temperature difference for condensation. 

Because 

Maintenance of a 

The gelant is a lso cooled by the shielding bath. Hydrogen gas  

(o r  nitrogen gas for the N 

a s  a t ransfer  gas, cooling the gelling agent by natural convection heat 

t ransfer  between the silica and the single-walled portion of the vessel. 

Occasional s t i r r ing of the gelant is car r ied  out to accomplish uniform 

cooling of the gelling agent. To further insure cooldown of the silica, 

the shielding dewar is kept at the tr iple point, and sufficient time (up to 

1 h) is allowed for the gel dewar p re s su re  to reach a steady state value. 

The gel cooldown is' tested by bleeding a small amount of hydrog.en gas. 

into the gel dewar. 

point pressure  within a few seconds, it is assumed that the .gel dewar 

and its contents a r e  cooled to the triple-point temperature.  

tes ts)  is  bled into the gel dewar where it ac t s  2 

If the pressure  in the vessel  falls back to the t r iple-  

After the liquid in the slush generator has  been cooled by natural  

convection to the tr iple point, slush production by the "freeze-thaw" 

method [ Mann, e t  a l . ,  19661 is begun. In practice, the freeze-thaw 

slush production is accomplished by opening valve 2, and then alternate- 

ly opening and closing valve 21. 

f rom the slush generator, and solid hydrogen is formed on the liquid 

surface. 

the surface and is s t i r r ed  into the slush mixture. 

cedure, slush with a solid fraction up to approximately 0. 40 can be gen- 

erated. The i r regular  geometry of the particles hinders closer packing 

of the freshly generated solid particles. 

When 21 is open, vapor is pumped 

When valve 21 is closed, this newly formed solid sinks below 

By this cyclic pro-  

Because some solids a r e  left 
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behind during the t ransfer  of slush to the gel dewar, the maximum solid 

fraction obtainable in the gel dewar was about 0. 30. 

Upon completion of the slush generating process ,  the slush valve 

separating the slush and gel vessels  is  opened; the slush is  t ransfer red  

to the gel dewar; and the gel is formed with vigorous st irring. 

with liquid nitrogen showed that it is advisable to t ransfer  the entire 

quantity of liquid or  slush a t  once, rather than meter  it in steps. 

step-wise liquid nitrogen transfer was tr ied,  the f i r s t  portion of L N  

introduced produced a hard gel at the top of the gelant bed. 

often stall  the motor used to drive the s t i r r e r .  

progress  of gelation was extremely slow. 

observe the slow progress  of wetting the silica f rom top to bottom. Al -  

though this w a s  of no consequence while gelling with a liquid, excessive 

time lapse could seriously affect the slush experiment. 

would not only partially mel t  the slush already t ransfer red  to the gel 

dewar, but the quality of the slush in the generato'r would also deteridrate.  

Work 

When 

2 
This would 

Also, the downward 

In fact, one would visually 

The heat ingress  

Due to heat ingress  and heat of st irring, the solid hydrogen melts ,  

thus producing more  liquid. 

tervals  that s t i r r ing is car r ied  out and the time when measurements a r e  

taken. The amount of solid at any particular time is estimated from the 

heat ingress  rate. 

sinks o r  until the solid has  melted. 

is  allowed to heat up. 

and by evaporating the shielding dewar liquid with warm gas .  

liquid evaporates, the gel s t ructure  hardens and can bear  more and more  

weight. 

extent that it can bear the 10-g plumb bob. 

An accurate record  is kept of the time in- 

Gel strength is measured until the 2: 3-g plumb bob 

Once the solid has melted, the gel 

The heating process  is aided by s t i r r ing the gel 

As  the 

An experiment is terminated when the gel  hardens to such a n  

Thus two se ts  of measure-  

ments, one of gelled slush and one of gelled liquid, a r e  made in succes-  

sion. The hydrogen f rom the gel dewar is metered until no further 
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reading is observed on the gas  meter.  

hydrogen contained in  the gel dewar during each stage of the experiment 

In this manner the mass of 

is determined. 

5. Experimental Results 

Although the principal objective of the tes ts  w a s  to characterize 

gelled slush hydrogen, liquid hydrogen as well as liquid and slush nitro- 

gen was also gelled. The measurements on the gelled liquids served as  

a basis of comparison for the gelled slush data. In addition, the gelled 

liquid data a r e  valuable in their  Qwn right since the previously existing 

data on gelled liquid hydrogen and nitrogen a r e  limited. Comparison of 

these liquid data with the data of others yields a n  estimate of the sys-  

tematic e r r o r .  .Because nitrogen i s  a relatively hazardless  material. 

requiring much l e s s  stringent safety requirements than hydrogen, pre-  

liminary tes ts  necessary for developing the experimental equipment and 

techniques were made with nitrogen. These nitrogen tes t s  also provide 

a useful experimental check of the validity of the models for gelled 

liquid and slush, equations ( 3 )  and (9) .  

5. 1 Gelled Liquid Nitrogen 

Table I1 summarizes  the measurements of weight-bearing capac- 

ity versus  m a s s  percent Cab-0-Si1 in the gel for gelled liquid nitrogen. 
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Table 11 

Liquid Nitrogen Gel Data 

Weight-bearing capacity as  a function of Cab -0 -Si1 concentration 

Plumb Bob Weight 

2 . 3  cN 4 . 9  cN 7 . 4  cN 9 . 8  cN 

Cab-0-Si1 Concentration in  Gel ( m a s s  percent) 

Expt 1 

Expt 2 

Expt 3 

Expt 4 

5. 4 6. 4 7. 1 7. 7 

- - -  6. 4 7. 1 7.  8 

4.9 5 .  6 6 .  5 6. 9 

5. 1 5. 7 6. 5 7. 0 

Average 5. 13 6. 0 2  6. 79 7 .  35 

The silica in experiments 1 and 2 had been used in previous 

attempts at LN gelation. 

‘was reused in experiment 4 .  

and used silica data is apparent, but since the data for the four runs a r e  

within the measurement  accuracy, the average values a r e  assumed to be 

representative. 

percent of Cab-0-Si1 in the liquid nitrogen gel versus  the weight-bearing 

capacity of the gel. 

points is suggestive of a slight nonlinearity. 

importance can be ascr ibed to it since the data can be  represented equal- 

ly  well with a straight line. 

which may be expressed as 

F r e s h  silica was used for experiment 3 and 2 
A consistent difference between the f r e sh  . 

Figure 6 presents  these average values for the mass 

The shape of the broken curve drawn through the 

However, a t  this stage no 

Tacitly, a l inear relationship is  assumed 

= 4.57 t 28 W . Y 
=N2 

2 3  
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Figure 6. Liquid Nitrogen Gel Characterization. 
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This  expression for Y can now be substituted for  Y in (9) and the 

theoretical  gel  s t ructure  for  gelled slush nitrogen can be calculated. 
.e 

5. 2 Gelled Slush Nitrogen 

The resul ts  of the gelation of slush nitrogen a r e  given in Table 

The estimate of solid nitrogen in the gel is made f rom the heat leak 

Squations (9) and (10) a r e  used to calculate the theoretical amount 

111. 

data. 

of Cab-0-Si1 that is required in  the gelation of the slush. The cryogen 

solid fraction, required to satisfy ( 9 ) ,  is taken f rom column 2 of Table 

111, for various values of the weight-bearing capacity. 

Table I11 

Slush Nitrogen Gel Data 

A comparison between the theoretical and actual amounts of Cab -0 -Si1 
in  gelled slush for various estimated solid nitrogen fractions and weight- 
bearing cspacity 

Weight-bearing Estimated solid , Mass  70 Cab-Q-Si1 
capacity, cN .fraction of N2 slush Actual The o r e tic a 1 

2. 3 

2. 3 

4.9 

7 . 4  

0. 19 

0 .  08  

0 .  19 

0. 29 

4. 20 4. 0 5  

5. 17 4. 61 

5. 17 4. 71 

5. 17 4. 63 

9 . 8  0. 3 3  5. 17 4. 94 

Table III shows that the theoretical and actual Cab-0-Si1 weight 

percentages required for producing gelled slush nitrogen mixtures of 

comparable yield strength a r e  in substantial agreement. 

a l so  plotted in figure 7. 

t u re  defined by (9) using the resul ts  of the gelled liquid tes t s ,  ( l o ) ,  as a 

base. 

These data are  

The curves represent  the theoretical  gel s t ruc-  
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Figure 7. Slush Nitrogen Gel Characterization. 
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5. 3 Gelled Liquid Hydrogen 

The resul ts  of the gelled liquid hydrogen tes t s  a r e  summarized 

in  Table IV which presents  the mass percent of Cab-0-Si1 required to 

support the various plumb bobs. 

Table IV  

Liquid Hydrogen Gel Data 

Weight-bearing capacity as a function of Cab-0 -Si1 concentration 

Plumb Bob Weight 

Expt. Cab -0 -Si1 2. 3 cN 4.9 cN 7 . 4  cN 9 . 8  cN 

No. Condition Cab-0-Si1 Concentration in  Gel (mass percent) 

5 - F r e s h  34. 8 35. ‘3 37. 3 39.1 

6 F r e s h  35. 4 37.0 38. 6 40. 6 

- - - -  41. 2 7 35.. 2 - - - -  used:k . 

Average . 35.1 , 35, 2 38.  0 * 40. 3” 

.b ‘6- 

The Cab-0-Si1 used in experiment No. 6 was reused in  experiment 
No. 7 .  
ment No. 6. Instead i t  was kept under vacuum until experiment No. 7 
was begun. 

The Cab-0-Si1 was not purged with nitrogen a t  the end of experi-  

Figure 8 presents  the average values for the weight percent Cab- 

0-Si1 in  the liquid hydrogen gel. 

points is given by 

The straight line drawn through the 

Y = 3 3 .  3 t 65 W . 
LH2 

An apparent increase in the data scatter in figure 8 compared 

with figure 6 is a resul t  of the expanded scale in figure 8. 

and (1 1) may be combined to give a semiempir ical  model for gelled 

slush hydrogen. 

Equations ( 9 )  
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Figure  8. Liquid Hydrogen Gel Characterization. 
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5 . 4  Gelled Slush Hydrogen 

The resul ts  of the gelation of slush hydrogen a r e  summarized in 

Table V. 

Table V 

Slush Iiydrogen Gel Data 

Expt. Weight-bearing Estimated solid Mass 70 Cab-0-Si1 
No. capacity, c N  fraction of H, slush Actual Theoretical 

5 

6 

7 

2. 3 

4. 9 

7.  4 

4. 9 

7. 4 

.9. 8 

2. 3 

4. 9 

7. 4 

9 . 8  

Gelled mass  a t  
boiling point 

0 .01  

0 .11  

0 .01  

0.10 

0 . 2 1  

Gelled mass  at  
boiling point 

Gelled mass at 
saturated liquid 
at 0. 4 atm. 

0 . 0 9  

0. 16 

34. 8 

34. 8 

34. 8 

34. 7 

34. 7 

34. 7 

35..2 

35. 2 

35. 2 

35. 2 

34. 8 

34. 7 

34. 1 

34. 6 

34. 2 

32. 8 

35. 2 

35.9 

34. 3 

34. 2 

The theoretical  mass percent Cab-0-Si1 is calculated f rom (9) and ( l l ) ,  

using the solid cryogen contents l isted in  column 3. 

of these data. The slush solid fractions have been rounded off to the 

neares t  0 . 0 5  increment. As before, the curves  represent  the theoreti-  

cal gel s t ructure  defined by (9) using the resul ts  of the gelled liquid 

hydrogen tes ts ,  ( l l ) ,  as a base. 

Figure 9 is a plot 
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Figure 9 .  Slush Hydrogen Gel Characterization. 
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6. Discussion of Results 

6 .1  Discussion of E r r o r s  

Four basic parameters  a r e  measured  in the experiments: mass 

percent of gelling agent in the gel, consistency o r  weight-bearing capac- 

ity of the gel, solid fraction of the slush, and density of the liquid. 
._ The mass  percent gelant in the gel is determined by weighing the 

gelant in the gel dewar to a n  estimated precision of 0. 5 g o r  1 percent of 

the gel mass. The systematic e r r o r  is also estimated to be about 1 p e r -  

cent of the gel weight. The weight o r  mass  of the liquid o r  slush in the 

gel is determined by measuring the gas evaporated f rom the gel by a 20 

cfh wet tes t  meter .  

ment is estimated to be accurate  within 2 percent. 

a l so  estimated to be about 2 percent of the liquid mass. 

random and systematic e r r o r  of'the mass percent gell-ing agent a r e  2 

percent and 3 percent, respectively. At typical value of Y and i t s  sys-  

tematic e r r05  limits for  the hydrogen experiments would be' 34 zk1 percent ,  

Since only moderate ca re  was taken, this measure-  

The random e r r o r  i s  

The l imits of 

. .  - .  . .  

The gel consistency o r  yield strength is determined using plumb 

The plumb bob weights were reported directly here ,  so the accu-  bobs. 

racy  of McKinney's [ 19681 relation between yield strength and plumb 

bob weight is not considered. The random e r r o r  o r  the repeatability of 

these measurements  in a ge l  of fixed composition is  the dominant e r r o r  

he re ,  since the weight and diameter of the plumb bobs a r e  known to 

much grea te r  accuracy. 

required to penetrate a gel of given composition was estimated f rom the 

liquid hydrogen and liquid nitrogen gel  data (Tables I1 and IV).  

standard deviation of the plumb bob weights about the straight line curve 

fits provided by equations (10) and ( 1  1) is 1. 3 cN. 

the measurements  of weight-bearing capacity have a n  e r r o r  l e s s  than 

2. 6 cN, the 2 sigma limits. 

This random e r r o r  in the weight of plumb bob 

The 

Thus, 95 percent of 
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The solid hydrogen content of the slush was determined from the 

length of t ime required to mel t  the solids together with heat leak data. 

Thus, an  account is kept of the heat introduced into the gel f rom the 

t ime it i s  formed until all the solid cryogen i s  melted. 

vapor pressure  above the triple-point value indicates that all the solid 

i s  melted. 

A r i s e  in the 

The heat leak into the gel dewar, a s  determined f rom liquid boil- 

off measurements at one atmosphere i s  as  follows: 

Fluid 

Nitrogen 
I !  

Hydrogen 

Gel Dewar Heat Leak 

S t i r r e r  Speed Heat Leak 

no s t i r r ing 2. 5 watts 

200 r a d / s  12.0 watts 

no s t i r r ing . 0. 6 watts 

200 r a d / s  3. 0 watts 

The lower nonstirring heat leak fo r  hydrogen resulted because a 

nitrogen shielding dewar was used in these experiments. 

ity of the heat leak values i s  estimated to be about 15 percent. 

a typical slush hydrogen experiment, 1410 s elapsed f rom the f i r s t  

measurement of the gel consistency until a l l  the solid hydrogen was 

melted. Out  of this time 990 s were without s t i r r ing and 420 s with 

The variabil-  

During 

stirring. 

be l e s s  than 20 percent, the systematic e r r o r  less  than 10 percent. 

typical solid fraction and i ts  l imits of random e r r o r  would be 0. 20 

The random e r r o r  of the slush solid fraction i s  estimated to 

A 

rt0. 04. 

The density of the liquid in the gelled liquid experiments was de- 

termined by measuring the vapor pressure  with a mercury  manometer. 

The random and systematic e r r o r s  a r e  each estimated to be about 0 . 2  

percent in density. 
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6. 2 Liquid Data 

2 The gelled liquid data (figs. 6 and 8) indicate that LN and LH 2 
gels exhibit approximately linearly varying weight-bearing character is  - 
tics with Cab-0-Si1 concentration in  the range of 0 -  to 10-cN weight- 

bearing capacity. The extrapolation of the gelled LH curve (fig. 8 )  to 

zero  weight-bearing capacity matches the observed value of Cab-0 -Si1 

concentration at  which the gelling agent separates  f rom LH 

2 

2' 
The dependence of Y on the density of the liquid expressed in 

( 3 )  may be checked by comparing the experimental values of Y for l i q -  

uid nitrogen and hydrogen. 

value of 4, 57 for Y 

( 3 )  predicts a Y value of 35. 3 for hydrogen compared to the experimen- 

tal value of 3 3 .  3 [ f rom (1  l)] at zero  weight-bearing capacity. 

percent difference between Y predicted and Y experimental is within 

the random e r r p r  limits of the experiment so that the density.depend- 

ence expressed by ( 3 )  may be considered to hold with moderate accuracy.' ' 

Based on the experimentally determined 

at zero weight-bearing capacity [ f rom ( l o ) ]  , 
=N2 

This 6 

Differences in the gelling agent preparation techniques and var i -  

ations in  particle size f rom sample to sample result  in  corresponding 

variations in  the mass percent Cab-0-Si1 required to produce gels of the 

same consistency. 

Y and the systematic e r r o r s  in this and other studies i s  obtained by 

comparing the resul ts  of this study with the resul ts  of others.  

m a r y  of this comparison is as  follows. 

An est imate  of a combination of these variations in 

A sum- 

Mass Percent  Cab -0 -Si1 Plumb Bob Weight 
Gel Other Studies This Study o r  Yield Strength 

Kartluke, et al. [ 19641 
2 

2 
4. 6 5. 1 2. 3 cN (20 N / m  ) 

35. 1 35. 1 2. 3 cN (20 N / m  ) 
LN2 

LH2 
McKinney & Tarpley [ 19661 

36. 1 38. 0 7.9 cN (48 N / m  2 ) 
M2 
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2 

They 

Kartluke, e t  al., out-gassed the Cab-0-Si1 at 250°C and 70 mN/m 

pres su re  and afterwards kept the samples in a helium atmosphere. 

la ter  reduced the baking temperature to 100°C with no significant change 

in the results.  

uation of this work. 

it was exposed to air during the weighing and assembly processes.  

The work of McKinney and Tarpley represents  a contin- 

In this study the Cab-0-Si1 was baked at 100" Cy but 

As  noted in the liquid nitrogen experiments, Cab-0-Si1 may tend 

to deteriorate on reuse in  a succeeding experiment. This was observed 

also in the preliminary runs with LH when silica f rom the previous ex-  

perimental runs with liquid and slush nitrogen was reused. 

cause of this deterioration, experimental run No. 7 was not purged with 

nitrogen as noted ear l ier .  However, no significant difference is evident 

with the hydrogen experimental runs in  which f resh  silica was reused. 

2 
Par t ly  be-  

6. 3 Slush Data 

Comparison of the s'lush data points in figures 7 and 9 with the 

semiempirical  curves based on (9) indicates a fair 'agreement  between 

the experiments and the model for gelled slush. An apparent tendency 

to underestimate the slush solid fraction is evident in figure 9 ,  but this 

discrepancy is within the experimental e r r o r .  Thus, the assumption 

that gelant concentration is proportional to the volume fraction of the 

liquid in slush is confirmed within the limited accuracy of the experi-  

ments. 

cryogen fractions up to 0 . 2 0 ,  the model for gelled slush hydrogen should 

hold at higher concentrations as well. To i l lustrate this reduction in the 

gelling agent requirement, comparative values of Cab -0 -Si1 concentra - 
tion a r e  given below in  Table VI for various liquid conditions and slush 

solid fractions. 
2 

40 N / m  

Although the data on slush hydrogen gelation only cover solid 

A gel of 6-cN weight-bearing capacity (equivalent to 

yield s t r e s s )  is chosen. 

3 4  



Table VI 

Comparison Between Slush and Liquid Hydrogen Gels 
6-cN weight-bearing capacity 

Slush Hydrogen 
Liquid Hydrogen Solid Fraction 

Mass percent 
Cab -0 -Si1 37. 7 35. 5 3 3 .  1 30. 5 24. 8 

6. 4 Observations 

It is  pertinent to point out some observations made during the 

course of the experiments. 

in the gel, the silica will settle, leaving a supernatant liquid at  the top. 

When a n  excess amount of LH is present 2 

.However, once a gel is formed that can support any weight of plumb bob, 

no such settling occurs.  

homogeneous mass .  

i t s  weight-bearing capacity is large. *In such cases ,  the s t i r r e r  isrould 

carve a hole in the center and compact gel on the gel dewar wall. 

The gel generally behaves like a semisolid 

There is  some difficulty in  s t i r r ing the gel when 

Com- 

paction of the mass presented a problem with weight-bearing capacity 

measurements close to the 10-cN weight range. 

increasing the silica m a s s  in the gel dewar f rom 47 g to 51 g. 

paction occurs at higher than 10  -cN weight-bearing capacity and contin- 

ues until the gel becomes dry. 

This was overcome by 

The com- 

Prolonged s t i r r ing at high speed does not affect the gel structure.  

During the course of a slow evaporation for the measurement of the 

weight-bearing capacity, LH 

3-hour period. 

the addition of liquid o r  slush, compaction of the dry  gelant hinders 

thorough mixing of the mass to a homogeneous mixture. 

serious with slush where prolonged s t i r r ing may melt away the solid 

gel showed no degeneration over a 2 -  to 2 
If the silica is not kept well s t i r r ed  and fluffed-up before 

This could be 

35 



fraction, thus rendering a slush 

known attempt. 

gel versus weight percent gelling agent verify the gelled liquid and slush 

models discussed within the accuracy of the experiments. These models 

state that the number of gelling agent particles in the liquid i s  a constant, 

and that the mass  percent gelling agent is proportional to the volume 

The measurements  of weight-bearing capaci 

fraction of liquid in the slush. 

gelled liquid was verified. 

Only the effect of liquid density on the 

The effect of gelant particle diameter was 

untested. A s  an  example of the. reduction . .  in the gelant requirement . .  
resulting f rom the use of slush; the m a s s  percent’cab-0-Si1 is reduced 

‘ f r o m  37. 7 percent to 24. 8 percent’in going f rom NBP liquid hydrogen to 

slush hydrogen of 0. 40 solid fraction. 

In general, gelled liquid and gelled slush-behave similarly. One 

important exception should be noted, however. The yield strength o r  

weight-bearing capacity of gelled liquid nitrogen o r  hydrogen increases  

with the addition of heat because of liquid evaporation. 

strength of gelled slush is reduced by the addition of heat because the 

melting solids dilute the gel. 

The yield 

36 



fuel value such as methane are desirable. 

agent should a l so  be approximately proportional to the cube of the par t i -  

cle diameter.  Thus, not only should particle size reductions yield sig- 

nificant improvement, but ca re  must  be taken in  the preparation of low 

density gelants so that the gains due to reduced density a r e  not counter- 

acted by increased particle diameter. Finally, as demonstrated by this 

work, significant reductions in Y can be accomplished through the use 

of slush hydrogen. 

The mass percent gelling 
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9 .  Nomenclature 

diameter of a gelling agent particle in m e t e r s  

mass in kilograms 

number of gelling agent par t ic les  in a gel 

volume of the gel in m 

volume of liquid in the gel, m 

volume of gelling agent in  the gel, m 

3 
volume of gelling agent particle, m 

3 

3 

3 

plumb bob weight, newtons 

solid cryogen fraction by mass 

mass percent of gelling agent in the gel 
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.l. 

Y; percent volume o f  gelling agent per  unit volume of the liquid 

100 X volume of gelling agent per  unit mass of slush 
J. 

y;t 
3 P density in k g / m  

Subscripts 

g gelling agent 

.e liquid 

.et tr iple -point liquid 

liquid hydrogen 

liquid nitrogen 

LH2 

LN2 

s.e slush 

SCH slush hydrogen 2 

SGNZ slush nitrogen 
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To convert from 

Length 

mil l imeter  ( m m )  

11. Appendix 

Approximate Conversion Fac tors  

P r e s s u r e  o r  S t ress  
2 2 

Ne wton/rn e te r2  ( N/mz ) 
Newton/meter2 (N/m 2 ) 
Newton/meter (N/m ) 

Rotational Speed 

Radian/second ( rad /s )  

Weight o r  Force  

newton (N)  
centinewton (cN) 

Pref ix  

mega 
kilo 
centi 
m i lli 
nano 

to 

inches 

psi  
mmHg (0 C )  
dynes/crn 

l i ter  

g ram weight 
gram weight 

Prefixes 

SI Symbol 

M 
k 
C 

m 
n 

multiply by 

3.937 

1.450 
7. 501 ( l o r 3  
1.000 (10)  

9. 549 

I. 000 ( 1 0 ) ~  

1. 020 ( 
1 .020 

Multiplication facto r 
6 

O 3  

1 o-2 
I o - ~  
10-9 

1 0  

_ _  
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